
1



2



3



This talk aims at providing the motivations for why using web-
based technology (HTML/CSS/JavaScript) is a viable options 
for implementing in-game UI, and even superior to other 
technology in some cases. There has been similar talks before 
in GDC but SimCity is as far as I know the biggest game title 
to have shipped with purely HTML based UI.

It will then describe and demo MUiLE, our in-house UI system 
built entirely in web-based technolgy, as an example and 
inspiration for what is possible and one way to use web-based 
tech for in-game UI.

1. HTML really means all web-based tech including 
HTML/CSS/JavaScript and the underlying browser engine

2. EA WebKit + MUiLE, Maxis’ UI system. MUiLE is our in 
house 

3. Guidelines, gotchas, general recommendations, random 
possible optimizations, issues we have encountered during 

4



development of our UI system.

4



5



This is just going to briefly go over some points, as this is a 
talk for why web-based UI is good, not Scaleform vs HTML 
talk. Ideally throughout the talk the pros and cons would be 
make obvious.

6



7



8



9



This video shows clips of SimCity’s UI and how they look and 
work. Includes the front end, loading screen, visualizations 
(bar graphs/pie charts), and in-game integration to 
accomplish the “Aero glass” effect for certain translucent 
panes.

10



11



Among all UI technology, it’s fair to say that web-based tech 
currently has the most development with competing open-
sourced implementations coming from Apple (WebKit/Safari), 
Google (Blink/Chrome), Mozilla (Gecko/Firefox), Microsoft 
(Trident/IE), etc. The breakneck pace of browser development 
means it’s hard to predict what’s going to happen in even just 
a few years but 

12



13



One issue with finding advices from the web is that a lot of 
best practices for web dev aren’t designed with 60fps games 
in mind. A lot of libraries are fully featured but don’t translate 
well to a situation where you need them to terminate within 
3ms, so it’s essential to establish a standard so people can 
follow and be conscious that their code needs to run fast.

14



Mention population display code being discovered by players.

15



16



17



18



19



WebKit has shown to be a very successful project, and used in 
multiple platforms, OS, from phones to desktops. One caveat 
is that you will ultimately be adding an additional dependency 
on companies developing it.

20



21



EA WebKit just outputs to a plain 2D texture that we then 
renders on top of the 3D scene. Background uses 
“transparent” CSS background style to make the content show 
through.

22



Final composite rendering the UI half transparent texture on 
top of 3D world.

23



The inspector is virtually identical to the one in Safari, so it’s 
very familiar with web developers.

24



This video shows

1) how we can easily bring in external web pages (in this case
google.com) into our in-game UI

2) The in-game inspector (the same as the one used in Safari) 
can be used to inspect elements, and also modify dynamic 
states via the JavaScript console

25



26



27



Example of what one such JSON file looks like. It represents a 
scene graph with each node possibly having other children, 
and can also reference other layout JSON files (with a .js
extension).

28



The code is a little simplified from how it works in our 
codebase but the gist is the same. In fact we didn’t eventually 
multithread our UI code but having them all run through an 
async API makes it easier to migrate in the future.

29



30



Editor demo video, showing off the tool we use to build UI. 
The editor is entirely built as a web page, served from a dev
version of the game (which acts as a localhost server).

31



Screenshot of in-game editor.

32



Requiring the game running is actually one of the annoying
points of using this editor. Standard web pages cannot save 
and load files from the file system which is why we had to run 
that through a native app to do that. Another option would be 
to write a simpler command line app, or use something like 
Chrome Apps which allow more flexibilities in terms of dealing 
with file system.

33



34



35



36



One of the early things we experimented with was to embed 
live web content, which turned out to be quite easy to do, as 
it’s just one iframe away.

Unfortunately this experiment did not go as far as we hoped 
and we ended up not embedding external web content in our 
game UI.

One caveat with doing it was that some external web pages 
would refuse to be loaded in iframes and took over the entire 
page for security reasons. Nowadays, this is more controllable 
sine you can use the sandbox flag on iframes to prevent frame 
jacking.

37



Mid-way documentation of editor. Shown in the middle was 
the animation editor that was a work in progress.

38



39



Another experiment was in world UI. What the screenshots 
showed were semi-transparent web pages being drawn in 
world space. This turned out to only be OK in certain limited 
sense, and while it was cool texts turned out to be much more 
legible if it’s just plain 2D UI aligned correctly without aliasing 
issues.

40



41



Current version of editor

42



Video showing hotloading layouts that take couple seconds 
and don’t require a repack step at all.

43



Draggable launcher window.

44



There are actually two web pages here. The main UI is one, 
and the billboard saying “Offline is here” is actually another 
web page rendered as in-world UI.

45



This is the page with the scrolling clouds shown earlier.

46



47



Chart drawing using third party libraries.

48



49



One issue with web-based UI has always been that it’s very 
programming heavy. HTML/CSS/JS are all text-based formats 
and past WYSIWYG tools haven’t done a very good job in 
allowing artists to make dynamic web pages, and nowhere as 
easy as Flash. This was the first thing we identified that we 
needed to solve in order to create UI as good as other 
competitive games.

It’s also very hard to beat Flash in this area since ease of 
creation is the strength of that ecosystem. If you have artists 
coming from using Flash the best you can is to ease their 
pains and use the best tools you can find.

Adobe has also been building tools like Adobe Edge to break 
into HTML5 animations, so the market is getting more mature. 
There are also other smaller tools such as Tumult Hype with 
more limited functionality.

50



We decided HTML is primarily designed as a document format, 
it’s best not to get too hung up on its semantics when you are 
building an application. As a result we rely heavily on 
JavaScript to dynamically generate UI, and link to CSS for 
styling.

51



Having source access allowed us to identify memory allocation 
issues, identify inefficiencies in C++/JS bindings, etc, which 
would all not be possible if it was a black box.

There are a few options for embedding web content now. 
There is Chromium Embedded Frameworks 
(https://code.google.com/p/chromiumembedded/), EA 
WebKit’s open sourced portions, etc.

52



Profile, profile, profile, profile, profile!

53



One flaw with JS is that it doesn’t really come with a standard 
library. The system-provided APIs tend to be limited and it’s 
up to the developer to integrate other third party libs. We 
have found that Closure provides a large set of functionality 
that covers a wide range of features and the compiler then 
allows us to cherry pick the feature we need instead of linking 
every piece of code in.

54



With the advent of Common JS, the way Closure specifies 
dependencies and pull in other JS files may be outdated. If 
you are starting a new project now it would be wise to look 
into that first.

55



Standard way of managing JS files are messy, hard to reuse 
across html files, and difficult to manage dependencies and 
order of inclusion

56



Example how the dependencies were specified. Here is the 
manifest for the editor code, which pulled in the main MUiLE
components, and then pull in all the editor related code. The 
main MUiLE components dependencies are defined in another 
file that specifies “goog.provide(‘muile.project’);”

57



The switch to Advanced mode deserves a little more 
discussion. For a lot of JS codebase it would involve a fairly 
intrusive refactor that may go against some established JS 
coding styles. The idea is to allow the compiler to perform as 
much inlining and optimizations as possible and reduce 
dynamic reflection, but a lot of common idioms such as 
intermixing myObj.myMember and myObj[‘myMember’] would 
now cause bugs because myObj.myMember would get 
optimized statically. For more info see 
https://developers.google.com/closure/compiler/docs/api-
tutorial3

As for whether it’s worth it or not we have found the result to 
be mixed and eventually didn’t pursue it, partially because of 
the push back from the team due to the amount of work we 
had to put in. In one test we did that was very JavaScript and 
function call heavy (spawning hundreds of animations, all 
calculated in JS) we could see up to 30%-40% faster 
performance. However in other more common cases that 
mostly spent time dealing with the DOM etc it was not as 
significant. The other main benefit is the size reduction but 

58



given the amount of memory modern machine has and we’re storing 
these JS files locally it’s not as big an issue for us.

Whether a team would want to switch over or not would probably 
then depends on the existing codebase and preferred coding style, 
and also how heavy they are doing work in JS.

Another issue was that compiled code (even Simple mode) tends to 
be annoying to debug. We have source maps to help but while it 
provides a mapping to the original source location it’s hard to 
inspect or modify the code dynamically like in raw JS. Incorrectly 
dependencies could mean you have different behaviors in compiled 
vs non-compiled code as well.

58



Dead code removal could be useful for removing debug scripts 
from accidentally leaking.

It’s possible to use other macro systems to accomplish the 
same thing but this allows us to use JS syntax and doesn’t 
rely on an external macro language.

59



The “Game” object here is a C++ runtime object bound to JS.

60



Software rendering means WebKit just renders everything to a 
texture for you and you just present it. It’s much more simple 
to integrate but does limit what you can do with it, as the GPU 
tend to be more more efficient at doing things like blending 
and transforming textures.

61



In the screenshot, the button pointed by the arrow would blink 
and radiates a red circle around it. The animation will repeat 
continuously until it was dismissed. This innocuous-looking 
animation was hitching the game and took us to a while to 
identify the trouble spot. The constant triggering of the 
animation plus the fact that it was blending over other opacity 
areas meant the software rasterizer had to redraw a lot of 
content. With a hardware compositor this should be much 
more easily solvable.

We used to have another example which was worse. When the 
game was paused we would draw a ring around the whole 
screen. Since that ring would be blinking, every frame it had 
to re-blend with the whole UI causing everything to be redraw, 
costing at least 10ms per frame.

62



63



64



Profile profile profile! This is one of those cases having source 
access is useful. You don’t really want to do it but if you are 
trying to optimize the last bits of memory it’s useful to step 
through the code in the browser to know what it’s doing.

Also access to source code would allow you to accurately 
predict how much memory alloc happens when you call C++ 
<-> JS, etc. Also what kind of size of block they allocate so 
you can use a fixed allocator for them.

65



If you think about how JS compilations work it would be easy 
to see why calling into C++ is expensive even if it’s 
implemented efficiently. Since you are crossing the language 
boundary it’s hard for the JS runtime to reason about the side 
effects of your C++ code, and thus it can’t do a lot of 
aggressive optimizations on the JS side around the C++ 
binding call. It’s for this reason that Google’s new Blink project 
is experimenting with moving more of the DOM to be 
processed in JavaScript.

Compilation of JS dynamically is expensive. The second piece 
of code caches a function pointer and usually the engine will 
keep the compiled results every time you evaluate it. The 
results are usually JIT compiled so calling into JS functions 
this way tend to be a lot more efficient.

66



Different browsers handle CSS scrolling differently. Some 
browsers interpret fractional CSS positions correctly and do 
the proper antialiasing, while others would round it. Instead of 
using CSS positions you could also use CSS transforms (using 
translation). Depending on the browser, this rounding behavior 
may or may not be the same between CSS position and CSS 
translation.

The demo will first show web page that uses both kinds of 
translations and also canvas in different browsers and how 
they behave differently. After that show the in-game scrolling 
to get some contexts of the scrolling clouds.

This is really an example that different web browsers often 
have completely different set of best practices that are 
contradictory with each other. You will need to decide which 
ones you want to support and sometimes come up with 
browser specific solutions, unfortunately.

67



68



Since we didn’t have hardware compositing support and also 
had to write a new editor, turned out we couldn’t do 
everything we wanted. We think the end results were worth it 
but it is a real cost to consider.

Performance included: rendering perf, memory, general JS

69



70



71



72


